Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.457
Filtrar
1.
J Neurosci Res ; 102(4): e25335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634155

RESUMO

Brain activity may manifest itself as oscillations which are repetitive rhythms of neuronal firing. These local field potentials can be measured via intracranial electroencephalography (iEEG). This review focuses on iEEG used to map human brain structures involved in olfaction. After presenting the methodology of the review, a summary of the brain structures involved in olfaction is given, followed by a review of the literature on human olfactory oscillations in different contexts. A single case is provided as an illustration of the olfactory oscillations. Overall, the timing and sequence of oscillations found in the different structures of the olfactory system seem to play an important role for olfactory perception.


Assuntos
Percepção Olfatória , Olfato , Humanos , Olfato/fisiologia , Encéfalo/fisiologia , Percepção Olfatória/fisiologia , Eletroencefalografia/métodos
2.
Nat Commun ; 15(1): 1230, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336844

RESUMO

Sensory perception depends on interactions between external inputs transduced by peripheral sensory organs and internal network dynamics generated by central neuronal circuits. In the sensory cortex, desynchronized network states associate with high signal-to-noise ratio stimulus-evoked responses and heightened perception. Cannabinoid-type-1-receptors (CB1Rs) - which influence network coordination in the hippocampus - are present in anterior piriform cortex (aPC), a sensory paleocortex supporting olfactory perception. Yet, how CB1Rs shape aPC network activity and affect odor perception is unknown. Using pharmacological manipulations coupled with multi-electrode recordings or fiber photometry in the aPC of freely moving male mice, we show that systemic CB1R blockade as well as local drug infusion increases the amplitude of gamma oscillations in aPC, while simultaneously reducing the occurrence of synchronized population events involving aPC excitatory neurons. In animals exposed to odor sources, blockade of CB1Rs reduces correlation among aPC excitatory units and lowers behavioral olfactory detection thresholds. These results suggest that endogenous endocannabinoid signaling promotes synchronized population events and dampen gamma oscillations in the aPC which results in a reduced sensitivity to external sensory inputs.


Assuntos
Canabinoides , Percepção Olfatória , Córtex Piriforme , Camundongos , Masculino , Animais , Percepção Olfatória/fisiologia , Endocanabinoides , Olfato/fisiologia , Odorantes , Canabinoides/farmacologia , Condutos Olfatórios/fisiologia , Bulbo Olfatório/fisiologia
3.
Neurobiol Aging ; 137: 8-18, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38394723

RESUMO

Hedonic perception deeply changes with aging, significantly impacting health and quality of life in elderly. In young adult mice, an odor hedonic signature is represented along the antero-posterior axis of olfactory bulb, and transferred to the olfactory tubercle and ventral tegmental area, promoting approach behavior. Here, we show that while the perception of unattractive odorants was unchanged in older mice (22 months), the appreciation of some but not all attractive odorants declined. Neural activity in the olfactory bulb and tubercle of older mice was consistently altered when attraction to pleasant odorants was impaired while maintained when the odorants kept their attractivity. Finally, in a self-stimulation paradigm, optogenetic stimulation of the olfactory bulb remained rewarding in older mice even without ventral tegmental area's response to the stimulation. Aging degrades behavioral and neural responses to some pleasant odorants but rewarding properties of olfactory bulb stimulation persisted, providing new insights into developing novel olfactory training strategies to elicit motivation even when the dopaminergic system is altered as observed in normal and/or neurodegenerative aging.


Assuntos
Odorantes , Percepção Olfatória , Humanos , Camundongos , Animais , Idoso , Olfato/fisiologia , Percepção Olfatória/fisiologia , Qualidade de Vida , Bulbo Olfatório/fisiologia
4.
Neuroimage ; 284: 120474, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38008298

RESUMO

Acute stress alters olfactory perception. However, little is known about the neural processing of olfactory stimuli after acute stress exposure and the role of cortisol in such an effect. Here, we used an event-related olfactory fMRI paradigm to investigate brain responses to odors of different valence (unpleasant, pleasant, or neutral) in healthy young adults following an acute stress (Trier Social Stress Test, TSST) induction (N = 22) or a non-stressful resting condition (N = 22). We obtained the odor pleasantness, intensity, and familiarity ratings after the acute stress induction or resting condition. We also measured the participants' perceived stress and salivary cortisol at four time points during the procedure. We found a stress-related decrease in brain activation in response to the pleasant, but not to the neutral or unpleasant odor stimuli in the right piriform cortex extending to the right amygdala, the right orbitofrontal cortex, and the right insula. In addition, activation of clusters within the regions of interest were negatively associated with individual baseline-to-peak increase in salivary cortisol levels after stress. We also found increased functional connectivity between the right piriform cortex and the right insula after stress when the pleasant odor was presented. The strength of the connectivity was positively correlated with increased perceived stress levels immediately after stress exposure. These results provide novel evidence for the effects of acute stress in attenuating the neural processing of a pleasant olfactory stimulus. Together with previous findings, the effect of acute stress on human olfactory perception appears to depend on both the valence and the concentration (e.g., peri-threshold or suprathreshold levels) of odor stimuli.


Assuntos
Odorantes , Percepção Olfatória , Adulto Jovem , Humanos , Hidrocortisona , Emoções/fisiologia , Olfato/fisiologia , Percepção Olfatória/fisiologia , Estresse Psicológico , Imageamento por Ressonância Magnética/métodos
5.
PLoS Biol ; 21(10): e3002206, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906721

RESUMO

Sparse coding can improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's benefits: similar sensory stimuli have significant overlap and responses vary across trials. To elucidate the effects of these 2 factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination-the mushroom body (MB) and the piriform cortex (PCx). We found that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the observed variability arises from noise within central circuits rather than sensory noise. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though these benefits only accrue with extended training with more trials. Overall, we have uncovered a conserved, stochastic coding scheme in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all (WTA) inhibitory circuit, that improves discrimination with training.


Assuntos
Dípteros , Percepção Olfatória , Animais , Camundongos , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Odorantes , Aprendizagem/fisiologia , Percepção Olfatória/fisiologia
6.
J Neurophysiol ; 130(5): 1226-1242, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791383

RESUMO

Odor perception is the impetus for important animal behaviors with two predominate modes of processing: odors pass through the front of the nose (orthonasal) while inhaling and sniffing, or through the rear (retronasal) during exhalation and while eating. Despite the importance of olfaction for an animal's well-being and that ortho and retro naturally occur, it is unknown how the modality (ortho vs. retro) is even transmitted to cortical brain regions, which could significantly affect how odors are processed and perceived. Using multielectrode array recordings in tracheotomized anesthetized rats, which decouples ortho-retro modality from breathing, we show that mitral cells in rat olfactory bulb can reliably and directly transmit orthonasal versus retronasal modality with ethyl butyrate, a common food odor. Drug manipulations affecting synaptic inhibition via GABAA lead to worse decoding of ortho versus retro, independent of whether overall inhibition increases or decreases, suggesting that the olfactory bulb circuit may naturally favor encoding this important aspect of odors. Detailed data analysis paired with a firing rate model that captures population trends in spiking statistics shows how this circuit can encode odor modality. We have not only demonstrated that ortho/retro information is encoded to downstream brain regions but also used modeling to demonstrate a plausible mechanism for this encoding; due to synaptic adaptation, it is the slower time course of the retronasal stimulation that causes retronasal responses to be stronger and less sensitive to inhibitory drug manipulations than orthonasal responses.NEW & NOTEWORTHY Whether ortho (sniffing odors) versus retro (exhalation and eating) is encoded from the olfactory bulb to other brain areas is not completely known. Using multielectrode array recordings in anesthetized rats, we show that the olfactory bulb transmits this information downstream via spikes. Altering inhibition degrades ortho/retro information on average. We use theory and computation to explain our results, which should have implications on cortical processing considering that only food odors occur retronasally.


Assuntos
Odorantes , Percepção Olfatória , Ratos , Animais , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Nariz/fisiologia , Percepção Olfatória/fisiologia
7.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796827

RESUMO

Odors guide food seeking, and food intake modulates olfactory function. This interaction is mediated by appetite-regulating hormones like ghrelin, insulin, and leptin, which alter activity in the rodent olfactory bulb, but their effects on downstream olfactory cortices have not yet been established in humans. The olfactory tract connects the olfactory bulb to the cortex through 3 main striae, terminating in the piriform cortex (PirC), amygdala (AMY), olfactory tubercule (OT), and anterior olfactory nucleus (AON). Here, we test the hypothesis that appetite-regulating hormones modulate olfactory processing in the endpoints of the olfactory tract and the hypothalamus. We collected odor-evoked functional magnetic resonance imaging (fMRI) responses and plasma levels of ghrelin, insulin, and leptin from human subjects (n = 25) after a standardized meal. We found that a hormonal composite measure, capturing variance relating positively to insulin and negatively to ghrelin, correlated inversely with odor intensity ratings and fMRI responses to odorized vs. clean air in the hypothalamus, OT, and AON. No significant correlations were found with activity in PirC or AMY, the endpoints of the lateral stria. Exploratory whole-brain analyses revealed significant correlations near the diagonal band of Broca and parahippocampal gyrus. These results demonstrate that high (low) blood plasma concentrations of insulin (ghrelin) decrease perceived odor intensity and odor-evoked activity in the cortical targets of the medial and intermediate striae of the olfactory tract, as well as the hypothalamus. These findings expand our understanding of the cortical mechanisms by which metabolic hormones in humans modulate olfactory processing after a meal.


Assuntos
Insulinas , Córtex Olfatório , Percepção Olfatória , Córtex Piriforme , Humanos , Odorantes , Leptina , Grelina , Apetite , Bulbo Olfatório/fisiologia , Córtex Olfatório/fisiologia , Hipotálamo , Córtex Piriforme/fisiologia , Percepção , Percepção Olfatória/fisiologia
8.
Science ; 380(6650): eade0027, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319217

RESUMO

Neuronal activity drives alterations in gene expression within neurons, yet how it directs transcriptional and epigenomic changes in neighboring astrocytes in functioning circuits is unknown. We found that neuronal activity induces widespread transcriptional up-regulation and down-regulation in astrocytes, highlighted by the identification of Slc22a3 as an activity-inducible astrocyte gene that encodes neuromodulator transporter Slc22a3 and regulates sensory processing in the mouse olfactory bulb. Loss of astrocytic Slc22a3 reduced serotonin levels in astrocytes, leading to alterations in histone serotonylation. Inhibition of histone serotonylation in astrocytes reduced the expression of γ-aminobutyric acid (GABA) biosynthetic genes and GABA release, culminating in olfactory deficits. Our study reveals that neuronal activity orchestrates transcriptional and epigenomic responses in astrocytes while illustrating new mechanisms for how astrocytes process neuromodulatory input to gate neurotransmitter release for sensory processing.


Assuntos
Astrócitos , Histonas , Bulbo Olfatório , Percepção Olfatória , Proteínas de Transporte de Cátions Orgânicos , Serotonina , Transmissão Sináptica , Animais , Camundongos , Astrócitos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Histonas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Serotonina/metabolismo , Bulbo Olfatório/metabolismo , Epigênese Genética , Percepção Olfatória/genética , Percepção Olfatória/fisiologia
9.
Elife ; 122023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37129358

RESUMO

Hearing and vision sensory systems are tuned to the natural statistics of acoustic and electromagnetic energy on earth and are evolved to be sensitive in ethologically relevant ranges. But what are the natural statistics of odors, and how do olfactory systems exploit them? Dissecting an accurate machine learning model (Lee et al., 2022) for human odor perception, we find a computable representation for odor at the molecular level that can predict the odor-evoked receptor, neural, and behavioral responses of nearly all terrestrial organisms studied in olfactory neuroscience. Using this olfactory representation (principal odor map [POM]), we find that odorous compounds with similar POM representations are more likely to co-occur within a substance and be metabolically closely related; metabolic reaction sequences (Caspi et al., 2014) also follow smooth paths in POM despite large jumps in molecular structure. Just as the brain's visual representations have evolved around the natural statistics of light and shapes, the natural statistics of metabolism appear to shape the brain's representation of the olfactory world.


Assuntos
Percepção Olfatória , Receptores Odorantes , Humanos , Percepção Olfatória/fisiologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Odorantes
10.
Curr Biol ; 33(11): 2235-2245.e4, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220745

RESUMO

The olfactory system uses hundreds of odorant receptors (ORs), the largest group of the G-protein-coupled receptor (GPCR) superfamily, to detect a vast array of odorants. Each OR is activated by specific odorous ligands, and like other GPCRs, antagonism can block activation of ORs. Recent studies suggest that odorant antagonisms in mixtures influence olfactory neuron activities, but it is unclear how this affects perception of odor mixtures. In this study, we identified a set of human ORs activated by methanethiol and hydrogen sulfide, two potent volatile sulfur malodors, through large-scale heterologous expression. Screening odorants that block OR activation in heterologous cells identified a set of antagonists, including ß-ionone. Sensory evaluation in humans revealed that ß-ionone reduced the odor intensity and unpleasantness of methanethiol. Additionally, suppression was not observed when methanethiol and ß-ionone were introduced simultaneously to different nostrils. Our study supports the hypothesis that odor sensation is altered through antagonistic interactions at the OR level.


Assuntos
Percepção Olfatória , Neurônios Receptores Olfatórios , Receptores Odorantes , Humanos , Odorantes , Receptores Odorantes/metabolismo , Olfato/fisiologia , Percepção , Neurônios Receptores Olfatórios/fisiologia , Percepção Olfatória/fisiologia
11.
Nature ; 618(7963): 193-200, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225986

RESUMO

Odorants are detected as smell in the nasal epithelium of mammals by two G-protein-coupled receptor families, the odorant receptors and the trace amine-associated receptors1,2 (TAARs). TAARs emerged following the divergence of jawed and jawless fish, and comprise a large monophyletic family of receptors that recognize volatile amine odorants to elicit both intraspecific and interspecific innate behaviours such as attraction and aversion3-5. Here we report cryo-electron microscopy structures of mouse TAAR9 (mTAAR9) and mTAAR9-Gs or mTAAR9-Golf trimers in complex with ß-phenylethylamine, N,N-dimethylcyclohexylamine or spermidine. The mTAAR9 structures contain a deep and tight ligand-binding pocket decorated with a conserved D3.32W6.48Y7.43 motif, which is essential for amine odorant recognition. In the mTAAR9 structure, a unique disulfide bond connecting the N terminus to ECL2 is required for agonist-induced receptor activation. We identify key structural motifs of TAAR family members for detecting monoamines and polyamines and the shared sequence of different TAAR members that are responsible for recognition of the same odour chemical. We elucidate the molecular basis of mTAAR9 coupling to Gs and Golf by structural characterization and mutational analysis. Collectively, our results provide a structural basis for odorant detection, receptor activation and Golf coupling of an amine olfactory receptor.


Assuntos
Aminas Biogênicas , Odorantes , Percepção Olfatória , Poliaminas , Receptores Odorantes , Animais , Camundongos , Aminas Biogênicas/análise , Aminas Biogênicas/química , Aminas Biogênicas/metabolismo , Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Odorantes/análise , Percepção Olfatória/fisiologia , Poliaminas/análise , Poliaminas/química , Poliaminas/metabolismo , Receptores de Amina Biogênica/química , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Receptores de Amina Biogênica/ultraestrutura , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/ultraestrutura , Olfato/fisiologia , Espermidina/análise , Espermidina/química , Espermidina/metabolismo
12.
Nature ; 617(7962): 777-784, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100911

RESUMO

Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously 'modality-selective' KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience.


Assuntos
Encéfalo , Percepção de Cores , Drosophila melanogaster , Aprendizagem , Memória , Neurônios , Percepção Olfatória , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Dopamina/metabolismo , Aprendizagem/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Neurônios GABAérgicos/metabolismo , Neurônios Serotoninérgicos/metabolismo , Memória/fisiologia , Percepção Olfatória/fisiologia , Neurônios Dopaminérgicos/metabolismo , Inibição Neural , Percepção de Cores/fisiologia , Odorantes/análise
13.
Curr Biol ; 33(8): 1523-1534.e4, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36977419

RESUMO

Odor perception is first determined by how the myriad of environmental volatiles are detected at the periphery of the olfactory system. The combinatorial activation of dedicated odorant receptors generates enough encoding power for the discrimination of tens of thousands of odorants. Recent studies have revealed that odorant receptors undergo widespread inhibitory modulation of their activity when presented with mixtures of odorants, a property likely required to maintain discrimination and ensure sparsity of the code for complex mixtures. Here, we establish the role of human OR5AN1 in the detection of musks and identify distinct odorants capable of enhancing its activity in binary mixtures. Chemical and pharmacological characterization indicate that specific α-ß unsaturated aliphatic aldehydes act as positive allosteric modulators. Sensory experiments show decreased odor detection threshold in humans, suggesting that allosteric modulation of odorant receptors is perceptually relevant and likely adds another layer of complexity to how odors are encoded in the peripheral olfactory system.


Assuntos
Percepção Olfatória , Neurônios Receptores Olfatórios , Receptores Odorantes , Humanos , Olfato/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Percepção Olfatória/fisiologia
14.
Respir Physiol Neurobiol ; 311: 104036, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804472

RESUMO

Breathlessness is a centrally processed symptom, as evidenced by activation of distinct brain regions such as the insular cortex and amygdala, during the anticipation and/or perception of breathlessness. Inhaled L-menthol or blowing cool air to the face/nose, both selective trigeminal nerve (TGN) stimulants, relieve breathlessness without concurrent improvements in physiological outcomes (e.g., breathing pattern), suggesting a possible but hitherto unexplored central mechanism of action. Four databases were searched to identify published reports supporting a link between TGN stimulation and activation of brain regions involved in the anticipation and/or perception of breathlessness. The collective results of the 29 studies demonstrated that TGN stimulation activated 12 brain regions widely implicated in the anticipation and/or perception of breathlessness, including the insular cortex and amygdala. Inhaled L-menthol or cool air to the face activated 75% and 33% of these 12 brain regions, respectively. Our findings support the hypothesis that TGN stimulation contributes to breathlessness relief by altering the activity of brain regions involved in its central neural processing.


Assuntos
Nervo Olfatório , Percepção Olfatória , Humanos , Mentol , Encéfalo/fisiologia , Dispneia , Percepção , Nervo Trigêmeo/fisiologia , Imageamento por Ressonância Magnética , Percepção Olfatória/fisiologia
15.
Q J Exp Psychol (Hove) ; 76(6): 1209-1219, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35866345

RESUMO

Olfactory perception can be modulated by the repeated exposure to odours. Olfactory habituation is a reduced behavioural response to repetitive stimulation. Edibility is considered an important top-down feature that can affect olfactory perception, but whether it could modulate olfactory habituation when food or nonfood odours are repeatedly smelled remains unclear. Indeed, due to their ecological salience, food odours attract attention automatically which might slow down habituation. This registered report aimed to determine whether olfactory habituation shows a different pattern when participants are presented with food or nonfood odours. In a within-subject design, 50 participants were tested under satiated and fasted states in separated experimental sessions. In each session, participants were exposed to the same food and nonfood odour in different blocks of 20 trials each. Participants rated the perceived odour intensity and pleasantness after each trial. We used an intermittent odour presentation to reduce olfactory fatigue while capitalising on the effect of cognitive states on habituation. Linear mixed-effects models showed that the perceived odour intensity decreased over time only for nonfood odours. Conversely, the perceived odour pleasantness decreased significantly more across trials for food odours. These effects were retrieved regardless of the participant's hunger state. Our results are in line with the olfactory-specific satiety theory which posits a specific decrease in the perceived pleasantness of food odours, without changes in the perceived odour intensity. In short, our findings indicate that perceived odour edibility modulates olfactory habituation, extending the previous literature on the impact of top-down factors on olfactory perception.


Assuntos
Odorantes , Percepção Olfatória , Humanos , Percepção Olfatória/fisiologia , Emoções/fisiologia , Olfato/fisiologia
16.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 60: e203068, 2023. ilus, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1433925

RESUMO

Environmental enrichment techniques include olfactory stimuli for improving animal welfare. This study aimed to analyze the reactions of 41 shelter dogs exposed to odorous stimuli, such as the method used in another study on wild canids. The focal animal method analyzed the dogs' reactions, with all behaviors recorded. Behavioral responses were classified as positive (P+), negative (N-), or other (Ot). Independent variables were all dogs and the size of the packs. The behavior between the basal (without stimulus), exposure, and after-stimulus withdrawal was analyzed. For all dogs, olfactory stimuli significantly increased P+ (P=0.001) and N- (P=0.004), contrasting with the decrement of Ot behaviors (P=0.001) from the basal to the exposure phase. After the withdrawal of the stimuli, P+, N-, and Ot behaviors returned to basal levels (P>0.05). There were no significant differences (P>0.05) in the conduct of small or large packs exposed to stimuli. Dogs are sensitive to olfactory stimuli, but arousal is generalized to P+ and N-. It is undesirable to an N- increase for improvement of animal welfare. Contrary to what was observed in a study with wild canids, the method failed in shelter dogs because N- was increased. The introduction of sudden novelty (olfactory stimulus) in an impoverished shelter environment may have caused excitement in the dogs. It is suggested that changes in the method, such as stimuli exposition to each dog in an isolated room, are necessary to increase sheltered dog well-being.(AU)


As técnicas de enriquecimento ambiental incluem estímulos olfativos para aumentar o bem-estar animal. O objetivo deste estudo foi analisar as reações de 41 cães de abrigo expostos a estímulos odoríferos, como o método utilizado em outro estudo com canídeos selvagens. As reações dos cães foram analisadas pelo método animal focal, com todos os comportamentos registrados. As respostas comportamentais foram classificadas como positivas (P+), negativas (N-) ou outras (Ot). As variáveis independentes foram todos os cães e o tamanho das matilhas. Foi analisado o comportamento entre o basal (sem estímulo), exposição e após a retirada do estímulo. Para todos os cães, os estímulos olfativos aumentaram significativamente P+ (P=0,001) e N- (P=0,004), contrastando com a diminuição dos comportamentos Ot (P=0,001) da fase basal para a de exposição. Após a retirada dos estímulos, os comportamentos P+, N- e Ot retornaram aos níveis basais (P>0,05). Não houve diferenças significativas (P>0,05) no comportamento de matilhas pequenas ou grandes expostas a estímulos. Os cães são sensíveis a estímulos olfativos, mas a excitação parece ser generalizada para ambos, P+ e N-. É indesejável um aumento de N- para melhoria do bem-estar animal. Ao contrário do que foi observado em um estudo com canídeos selvagens, o método falhou em abrigar cães porque o N- foi aumentado. A introdução de uma novidade repentina (estímulo olfativo) em um ambiente de abrigo empobrecido, pode ter causado excitação exagerada nos cães. Sugere-se alterações no método, como a exposição de estímulos a cada cão em uma sala isolada necessária para aumentar o bem-estar do cão abrigado.(AU)


Assuntos
Animais , Receptores Odorantes/análise , Cães/anatomia & histologia , Percepção Olfatória/fisiologia , Abrigo para Animais
17.
Nature ; 611(7937): 754-761, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352224

RESUMO

Odour plumes in the wild are spatially complex and rapidly fluctuating structures carried by turbulent airflows1-4. To successfully navigate plumes in search of food and mates, insects must extract and integrate multiple features of the odour signal, including odour identity5, intensity6 and timing6-12. Effective navigation requires balancing these multiple streams of olfactory information and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating back a century have indicated that, of these many sensory inputs, the wind provides the main directional cue in turbulent plumes, leading to the longstanding model of insect odour navigation as odour-elicited upwind motion6,8-12,14,15. Here we show that Drosophila melanogaster shape their navigational decisions using an additional directional cue-the direction of motion of odours-which they detect using temporal correlations in the odour signal between their two antennae. Using a high-resolution virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely walking flies, we demonstrate that such odour-direction sensing involves algorithms analogous to those in visual-direction sensing16. Combining simulations, theory and experiments, we show that odour motion contains valuable directional information that is absent from the airflow alone, and that both Drosophila and virtual agents are aided by that information in navigating naturalistic plumes. The generality of our findings suggests that odour-direction sensing may exist throughout the animal kingdom and could improve olfactory robot navigation in uncertain environments.


Assuntos
Drosophila melanogaster , Percepção de Movimento , Odorantes , Percepção Olfatória , Navegação Espacial , Vento , Animais , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Odorantes/análise , Navegação Espacial/fisiologia , Percepção de Movimento/fisiologia , Fatores de Tempo , Percepção Olfatória/fisiologia , Antenas de Artrópodes/fisiologia , Sinais (Psicologia) , Caminhada/fisiologia
18.
Biosens Bioelectron ; 211: 114391, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35609456

RESUMO

Mammalian olfactory perception is an important physiological function for tasks such as finding food, identifying species, and avoiding enemies. Previous studies have demonstrated the molecular basis of receptors and the anatomical structure of the olfactory bulb (OB), which is the initial processing center for odor perception. However, there remains some controversy about the coding and transmission mode of olfactory information in the OB through neuronal interaction mediated by different neurotransmitters. In this paper, a biomimetic sensor based on OB neuronal network was developed to detect trace amounts of typical neurotransmitters and decode odor perception in vitro. Primary OB neurons were seeded on a microelectrode array (MEA) chip to capture multichannel extracellular electrical activities. The firing features of OB neurons were statistically analyzed after stimulation with graded concentrations of the glutamate and gamma-aminobutyric acid (GABA). Cross-correlation analysis between channels was used to evaluate the connection status in the neuronal networks. The concentration-dependent responses to these two neurotransmitters were assessed over a range of values, and the lower limits of detection for glutamate and GABA were 100 nM and 50 nM, respectively. Stimulation with excessive concentrations produced response tolerance and neurotoxicity, and transmission between cells in the neural network was modulated by different neurotransmitters. This device could serve as a novel biosensor for detecting trace amounts of common neurotransmitters and for screening the effects of drugs on the physiology of olfaction. The response patterns of this biomimetic sensor are conducive to revealing the coding mechanism of information processing in the olfactory system.


Assuntos
Técnicas Biossensoriais , Percepção Olfatória , Animais , Biomimética , Ácido Glutâmico , Mamíferos , Neurotransmissores , Odorantes/análise , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Olfato , Ácido gama-Aminobutírico
19.
J Exp Biol ; 225(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35285471

RESUMO

Animals, including humans, detect odours and use this information to behave efficiently in the environment. Frequently, odours consist of complex mixtures of odorants rather than single odorants, and mixtures are often perceived as configural wholes, i.e. as odour objects (e.g. food, partners). The biological rules governing this 'configural perception' (as opposed to the elemental perception of mixtures through their components) remain weakly understood. Here, we first review examples of configural mixture processing in diverse species involving species-specific biological signals. Then, we present the original hypothesis that at least certain mixtures can be processed configurally across species. Indeed, experiments conducted in human adults, newborn rabbits and, more recently, in rodents and honeybees show that these species process some mixtures in a remarkably similar fashion. Strikingly, a mixture AB (A, ethyl isobutyrate; B, ethyl maltol) induces configural processing in humans, who perceive a mixture odour quality (pineapple) distinct from the component qualities (A, strawberry; B, caramel). The same mixture is weakly configurally processed in rabbit neonates, which perceive a particular odour for the mixture in addition to the component odours. Mice and honeybees also perceive the AB mixture configurally, as they respond differently to the mixture compared with its components. Based on these results and others, including neurophysiological approaches, we propose that certain mixtures are convergently perceived across various species of vertebrates/invertebrates, possibly as a result of a similar anatomical organization of their olfactory systems and the common necessity to simplify the environment's chemical complexity in order to display adaptive behaviours.


Assuntos
Odorantes , Percepção Olfatória , Animais , Animais Recém-Nascidos , Camundongos , Percepção Olfatória/fisiologia , Coelhos , Roedores , Olfato , Especificidade da Espécie
20.
Elife ; 112022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254262

RESUMO

Sensory systems are often tasked to analyse complex signals from the environment, separating relevant from irrelevant parts. This process of decomposing signals is challenging when a mixture of signals does not equal the sum of its parts, leading to an unpredictable corruption of signal patterns. In olfaction, nonlinear summation is prevalent at various stages of sensory processing. Here, we investigate how the olfactory system deals with binary mixtures of odours under different brain states by two-photon imaging of olfactory bulb (OB) output neurons. Unlike previous studies using anaesthetised animals, we found that mixture summation is more linear in the early phase of evoked responses in awake, head-fixed mice performing an odour detection task, due to dampened responses. Despite smaller and more variable responses, decoding analyses indicated that the data from behaving mice was well discriminable. Curiously, the time course of decoding accuracy did not correlate strictly with the linearity of summation. Further, a comparison with naïve mice indicated that learning to accurately perform the mixture detection task is not accompanied by more linear mixture summation. Finally, using a simulation, we demonstrate that, while saturating sublinearity tends to degrade the discriminability, the extent of the impairment may depend on other factors, including pattern decorrelation. Altogether, our results demonstrate that the mixture representation in the primary olfactory area is state-dependent, but the analytical perception may not strictly correlate with linearity in summation.


Assuntos
Percepção Olfatória , Neurônios Receptores Olfatórios , Animais , Camundongos , Neurônios/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Olfato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...